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What is the „correct” hyperbolic 
dimension of real network?
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𝕊1/ℍ2model – overview

• Similarity space – circle of radius 𝑅 (𝑁 = 2𝜋𝑅)

• Each node has a hidden degree 𝜅

• Probability of connection

𝑝𝑖𝑗 =
1

1 +
𝑑𝑖𝑗
𝜇𝜅𝑖𝜅𝑗

𝛽

• 𝜇 – controls average degree

• 𝛽 – controls level of clustering

• 𝑑𝑖𝑗 = 𝑅Δ𝜃𝑖𝑗
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Advantages of 𝕊1/ℍ2model

• Model explains typical properties of real networks
• small-world property

• heterogenous degree distribution

• high level of clustering
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Advantages of 𝕊1/ℍ2model

• Embedding of real networks provides
• efficient navigation

• detection of communities

• scale-down and scale-up network replicas
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Limitations of 𝕊1/ℍ2model
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1. Overlapping communities 2. Estimated dimension based on cycles 
statistics is usually larger than 1

Mean densities of edge triangles (𝐶𝑡) vs squares (𝐶𝑠)

African urban network



𝕊𝐷/ℍ𝐷+1 model 
• A node 𝑖 is endowed with a two variables

• Hidden degree 𝜅𝑖
• Position in the similarity space 𝐯i = v1, v2, … , vD+1

• The connection probability between node 𝑖 and 𝑗

𝑝𝑖𝑗 =
1

1 +
𝑑𝑖𝑗

𝜇𝜅𝑖𝜅𝑗

1
𝐷

𝛽

• 𝑑𝑖𝑗 = 𝑅Δ𝜃𝑖𝑗 = 𝑅 arccos
𝐯𝑖∙𝐯j

𝐯𝑖 𝐯𝑗
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Outline of the method

1. Inferring the hidden degrees

2. Inferring parameter 𝛽

3. Initial nodes' positions with Laplacian Eigenmaps

4. Final nodes' positions with Likelihood Maximization

5. Adjusting hidden degrees
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Inferring hidden degrees and parameter 𝛽

1. Initialize hidden degrees 𝜅-s as observed degrees in the real network

2. Compute the expected degree for each node according to the 𝕊𝐷 model

ത𝑘 𝜅𝑖 =
Γ

𝐷 + 1
2

𝜋Γ
𝐷
2



𝑗≠𝑖

න

0

𝜋
sin𝐷−1 𝜃 𝑑𝜃

1 +
𝑅𝜃

𝜇𝜅𝑖𝜅𝑗

1
𝐷

𝛽

3. Correct hidden degrees until max ത𝑘 𝜅𝑖 − 𝑘𝑖 < 𝜖

4. Initialize mean local clustering for each degree class

5. Compute expected mean local clustering spectrum 

6. Accept given value of 𝛽 if ҧ𝑐 − ҧ𝑐𝑒𝑚𝑝 < 𝜖 ҧ𝑐 , otherwise adjust 𝛽 and recompute 
hidden degrees.
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Inferring nodes’ positions

• Laplacian Eigenmaps
• Entries in weight matrix defined as 

𝜔𝑖𝑗 = 𝑒−
𝐱𝑖−𝐱𝑗

2

𝑡 = 𝑒−
2 sin Δ𝜃𝑖𝑗

𝑡

𝑡 – scalling factor, Δ𝜃𝑖𝑗 – expected angular distance between nodes 𝑖 and 𝑗

• Likelihood maximization
• To adjust the positions that maximize the likelihood of the network being generated 

by the 𝕊𝐷model
• Select the most likely candidate positions

ln ℒ𝑖 = 

𝑖≠𝑗

𝑎𝑖𝑗 ln 𝑝𝑖𝑗 + 1 − 𝑎𝑖𝑗 ln(1 − 𝑝𝑖𝑗)
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Results on synthetic networks



Validation on synthetic networks

• Comparison between the 
original positions and the 
inferred ones in 𝕊2 model
• (top) without communities

• (bottom) with 6 communities
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Detecting the hyperbolic dimension 
of synthetic networks
• Navigation (greedy routing)

• Community detection
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Navigation – results

20Synthetic networks with: 𝑁 = 2000, 𝛾 = 2.7, 𝛽 = 2.5𝐷. Average over 10 realizations.



Detecting the hyperbolic dimension of 
synthetic networks
• Navigation (greedy routing)

• Community detection
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6 communities, nodes within each community are distributed uniformly



Community detection – results

22𝛽 = 3, 𝛾 = 2.7, 𝑁 = 2000, results averaged over 10 realizations

Δ𝜃𝑡 = 0.05 Δ𝜃𝑡 = 0.3 Δ𝜃𝑡 = 0.7



African urban network – 𝕊1 vs 𝕊2
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NMI = 0.61 NMI = 0.73



Conclusions and further steps

Summary

• D-Mercator:
• a tool to embed networks into multidimensional hyperbolic spaces
• gives meaningful maps of synthetic networks

• Navigation heavily depends on the dimension of synthetic networks

• Higher dimension helps to unravel the network community structure

In progress

• Determine the intrinsic dimensionality of real networks

Next goal

• What information does the additional dimension give us?

• How does dimension govern the dynamical processes?
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Questions?

@rjankowskiub

https://robertjankowski.github.io/

robert.jankowski@ub.edu



Link between 𝕊𝐷 and ℍ𝐷+1model

• Hidden degree of each node 𝜅𝑖 can be mapped to a radial coordinate as

𝑟𝑖 = 𝑅 −
2

𝐷
ln
𝜅𝑖
𝜅0

• And connection probability becomes

𝑝𝑖𝑗 =
1

1 + 𝑒
𝛽
2(𝑥𝑖𝑗−

𝑅)
,

𝑅 = 2 ln
2𝑅

𝜇𝜅0
2 1/𝐷

• 𝑥𝑖𝑗 is the hyperbolic distance and can be approximated by

𝑥𝑖𝑗 = 𝑟𝑖 + 𝑟𝑗 + 2 ln
Δ𝜃𝑖𝑗
2
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