D-Mercator: Network embedding into ultra low-dimensional hyperbolic spaces

Robert Jankowski, Marián Boguñá, M. Ángeles Serrano

Palma de Mallorca, 2022

PAPER • OPEN ACCESS

Mercator: uncovering faithful hyperbolic embeddings of complex networks

Guillermo García-Pérez^{8,1,2}, Antoine Allard^{8,3,4}, M Ángeles Serrano^{5,6,7} and Marián Boguñá^{5,6} Published 16 December 2019 • © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft <u>New Journal of Physics</u>, <u>Volume 21</u>, <u>December 2019</u>

Citation Guillermo García-Pérez et al 2019 New J. Phys. 21 123033

PAPER • OPEN ACCESS

Mercator: uncovering faithful hyperbolic embeddings of complex networks

Guillermo García-Pérez^{8,1,2}, Antoine Allard^{8,3,4}, M Ángeles Serrano^{5,6,7} and Marián Boguñá^{5,6}

Published 16 December 2019 • © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of

Physics and Deutsche Physikalische Gesellschaft

New Journal of Physics, Volume 21, December 2019

Citation Guillermo García-Pérez et al 2019 New J. Phys. 21 123033

Article | Open Access | Published: 20 November 2017

Machine learning meets complex networks via coalescent embedding in the hyperbolic space

Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi & Carlo Vittorio Cannistraci

Nature Communications 8, Article number: 1615 (2017) Cite this article

14k Accesses 78 Citations 49 Altmetric Metrics

PAPER • OPEN ACCESS

Mercator: uncovering faithful hyperbolic embeddings of complex networks

Guillermo García-Pérez^{8,1,2}, Antoine Allard^{8,3,4}, M Ángeles Serrano^{5,6,7} and Marián Boguñá^{5,6}

Published 16 December 2019 • © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of

Physics and Deutsche Physikalische Gesellschaft

New Journal of Physics, Volume 21, December 2019

Citation Guillermo García-Pérez et al 2019 New J. Phys. 21 123033

Hyperbolic Graph Convolutional Neural Networks

Ines Chami^{*‡} Rex Ying^{*†} Christopher Ré[†] Jure Leskovec[†]

[†]Department of Computer Science, Stanford University [‡]Institute for Computational and Mathematical Engineering, Stanford University {chami, rexying, chrismre, jure}@cs.stanford.edu Article Open Access Published: 20 November 2017

Machine learning meets complex networks via coalescent embedding in the hyperbolic space

Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi & Carlo Vittorio Cannistraci

Nature Communications 8, Article number: 1615 (2017) Cite this article

14k Accesses 78 Citations 49 Altmetric Metrics

What is the "correct" hyperbolic dimension of real network?

 $\mathbb{S}^1/\mathbb{H}^2$ model – overview

- Similarity space circle of radius R ($N = 2\pi R$)
- Each node has a hidden degree κ
- Probability of connection

$$p_{ij} = \frac{1}{1 + \left(\frac{d_{ij}}{\mu \kappa_i \kappa_j}\right)^{\beta}}$$

- μ controls average degree
- β controls level of clustering
- $d_{ij} = R \Delta \theta_{ij}$

Advantages of $\mathbb{S}^1/\mathbb{H}^2$ model

- Model explains typical properties of real networks
 - small-world property
 - heterogenous degree distribution
 - high level of clustering

García-Pérez, G., Allard, A., Serrano, M. Á., & Boguñá, M. (2019). Mercator: uncovering faithful hyperbolic embeddings of complex networks. New Journal of Physics, 21(12), 123033.

Advantages of $\mathbb{S}^1/\mathbb{H}^2$ model

- Embedding of real networks provides
 - efficient navigation
 - detection of communities
 - scale-down and scale-up network replicas

Limitations of $\mathbb{S}^1/\mathbb{H}^2$ model

1. Overlapping communities

Désy, B., Desrosiers, P., & Allard, A. (2022). Dimension matters when modeling network communities in hyperbolic spaces. *arXiv preprint arXiv:2209.09201*. Almagro, P., Boguna, M., & Serrano, M. (2021). Detecting the ultra low dimensionality of real networks. *arXiv preprint arXiv:2110.14507*.

Limitations of $\mathbb{S}^1/\mathbb{H}^2$ model

1. Overlapping communities

2. Estimated dimension based on cycles statistics is usually larger than 1

Désy, B., Desrosiers, P., & Allard, A. (2022). Dimension matters when modeling network communities in hyperbolic spaces. *arXiv preprint arXiv:2209.09201*. Almagro, P., Boguna, M., & Serrano, M. (2021). Detecting the ultra low dimensionality of real networks. *arXiv preprint arXiv:2110.14507*.

 $\mathbb{S}^{D}/\mathbb{H}^{D+1}$ model

- A node *i* is endowed with a two variables
 - Hidden degree κ_i
 - Position in the similarity space $\boldsymbol{v}_i = \{v_1, v_2, \dots, v_{D+1}\}$
- The connection probability between node *i* and *j*

$$p_{ij} = \frac{1}{1 + \left(\frac{d_{ij}}{\left(\mu\kappa_i\kappa_j\right)^{\frac{1}{D}}}\right)^{\beta}}$$

•
$$d_{ij} = R\Delta\theta_{ij} = R \arccos\left(\frac{\mathbf{v}_i \cdot \mathbf{v}_j}{\|\mathbf{v}_i\| \|\mathbf{v}_j\|}\right)$$

 κ_B

 κ_A

 $\Delta \theta$

 κ_C

 $\langle \Delta \theta_{BC} \rangle$

D-Mercator: Network embedding into ultra low-dimensional hyperbolic spaces

Outline of the method

- 1. Inferring the hidden degrees
- 2. Inferring parameter β
- 3. Initial nodes' positions with Laplacian Eigenmaps
- 4. Final nodes' positions with Likelihood Maximization
- 5. Adjusting hidden degrees

Inferring hidden degrees and parameter eta

- 1. Initialize hidden degrees κ -s as observed degrees in the real network
- 2. Compute the expected degree for each node according to the \mathbb{S}^D model

$$\overline{k}(\kappa_i) = \frac{\Gamma\left(\frac{D+1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{D}{2}\right)} \sum_{j\neq i} \int_{0}^{\pi} \frac{\sin^{D-1}\theta \ d\theta}{1 + \left(\frac{R\theta}{\left(\mu\kappa_i\kappa_j\right)^{\frac{1}{D}}}\right)^{\beta}}$$

- 3. Correct hidden degrees until $\max\{|\bar{k}(\kappa_i) k_i|\} < \epsilon$
- 4. Initialize mean local clustering for each degree class
- 5. Compute expected mean local clustering spectrum
- 6. Accept given value of β if $|\bar{c} \bar{c}^{emp}| < \epsilon_{\bar{c}}$, otherwise adjust β and recompute hidden degrees.

Inferring nodes' positions

- Laplacian Eigenmaps
 - Entries in weight matrix defined as

$$\omega_{ij} = e^{-\frac{\left|\mathbf{x}_{i} - \mathbf{x}_{j}\right|^{2}}{t}} = e^{-\frac{2\sin\left(\Delta\theta_{ij}\right)}{t}}$$

t – scalling factor, $\langle \Delta \theta_{ij} \rangle$ – expected angular distance between nodes i and j

- Likelihood maximization
 - To adjust the positions that maximize the likelihood of the network being generated by the \mathbb{S}^D model
 - Select the most likely candidate positions

$$\ln \mathcal{L}_{i} = \sum_{i \neq j} a_{ij} \ln p_{ij} + (1 - a_{ij}) \ln(1 - p_{ij})$$

Results on synthetic networks

Validation on synthetic networks

- Comparison between the original positions and the inferred ones in S² model
 - (top) without communities
 - (bottom) with 6 communities

Detecting the hyperbolic dimension of synthetic networks

- Navigation (greedy routing)
- Community detection

Navigation – results

Synthetic networks with: N = 2000, $\gamma = 2.7$, $\beta = 2.5D$. Average over 10 realizations.

Detecting the hyperbolic dimension of synthetic networks

- Navigation (greedy routing)
- Community detection

6 communities, nodes within each community are distributed uniformly

Community detection – results

 $\beta = 3, \gamma = 2.7, N = 2000$, results averaged over 10 realizations

African urban network – \mathbb{S}^1 vs \mathbb{S}^2

Conclusions and further steps

<u>Summary</u>

- D-Mercator:
 - a tool to embed networks into multidimensional hyperbolic spaces
 - gives meaningful maps of synthetic networks
- Navigation heavily depends on the dimension of synthetic networks
- Higher dimension helps to unravel the network community structure

In progress

• Determine the intrinsic dimensionality of real networks

<u>Next goal</u>

- What information does the additional dimension give us?
- How does dimension govern the dynamical processes?

Questions?

robert.jankowski@ub.edu

https://robertjankowski.github.io/

@rjankowskiub

Link between \mathbb{S}^{D} and \mathbb{H}^{D+1} model

• Hidden degree of each node κ_i can be mapped to a radial coordinate as

$$r_i = \hat{R} - \frac{2}{D} \ln \frac{\kappa_i}{\kappa_0}$$

• And connection probability becomes

$$p_{ij} = \frac{1}{1 + e^{\frac{\beta}{2}(x_{ij} - \hat{R})}},$$

1

$$\widehat{R} = 2 \ln \left(\frac{2R}{(\mu \kappa_0^2)^{1/D}} \right)$$

• x_{ij} is the hyperbolic distance and can be approximated by

$$x_{ij} = r_i + r_j + 2\ln\frac{\Delta\theta_{ij}}{2}$$